随着大数据、人工智能、云计算、物联网等数字化技术的普及和广泛应用,传统的数据仓库模式,在快速发展的企业面前已然显得力不从心。数据湖,是可以容纳大量的原始数据的存储库和处理系统,已经成为企业应用大数据的重要工具。数据湖可以更好地支撑数据预测分析、跨领域分析、主动分析、实时分析以及多元化结构化数据分析,可以加速从数据到价值的过程,打造相应业务能力。而有效的数据治理才是数据资产形成的必要条件,同时数据治理是一个持续性过程,也是数据湖逐步实现数据价值的过程。未来在多方技术趋于融合,落地场景将不断创新,数据湖、数据治理或将成为新的技术热点。
Charles Araujo是一名业界知名的分析师,是国际上公认的数字企业权威,也是《IT的量子时代:为什么对IT的一切都知道要改变》一书的作者。作为Intellyx公司的首席分析师,他还是数字转换研究所的创始人。
《基于数据湖架构的大数据平台》(Big data platform based on Data Lake Architecture)正式发布,双方就数据湖(Data Lake)的现实挑战、技术实践与发展趋势展开了探讨。
如果数据有一点点就不错了,那么数据是海量的话就一定棒极了,对不对?这就好比说, 如果一个炎日夏日里的微风让你感觉凉爽,那么你会为一阵一阵的凉风感到欣喜若狂。以下为译文:
如何避免大数据分析失败呢?从基本的业务管理角度来看,有一些最佳做法是显而易见的:一定要有公司最高层管理人员的支持,确保所需的全部技术投资获得足够的资金,并引入具有专业知识的人才和/或提供良好的培训。如果你没有先解决这些基础问题,那么没有什么比这更重要了。
如果你刚接触大数据,你可能会觉得这个领域很难以理解,无从下手。不过,你可以从下面这份包含了 25 个大数据术语的清单入手,那么我们开始吧。
Gartner预测到2018年,90%现用的数据湖都会沦为无用。如何将数据湖的“无用”变成“有用”呢?这需要花费更多努力去解决。而且,大多数据湖项目的管理根本不存在。在此情况下,本文将试着从三个方面进行探讨
世界对数据湖的兴趣依然在不断增长,但如果说对数据湖的宣传都是的话,这就贬低了数据湖真正的能力。“数据仓库”和“大数据”等概念都逐渐深入人心,但“数据湖”仍然是让IT和业务相关者头疼的一件事情。