当前,一个大规模生产、分享和应用数据的时代已经开启。庞大的人群和应用市场,复杂性高、充满变化,使中国成为世界上最复杂的大数据国家。
1.大数据时代的思维变革
大数据与三个重大的思维转变有关:首先,要分析与某事物相关的所有数据,而不是依靠分析少量的数据样本;其次,我们乐于接受数据的纷繁复杂,而不再追求精确性;最后,我们的思想发生了转变,不再探求难以捉摸的因果关系,转而关注事物的相关关系。很长一段时间以来,准确分析大量数据对我们而言都是一种挑战。为了让分析变得简单,我们会把数据缩减到最少,加上统计学的采样分析,可以得出能够帮助我们决策的结论。小数据时代,样本选择的随机性比样本数量更重要,采样分析的精确性随着采样随机性的增加而大幅提高。但是,采样分析的成功依赖于采样的绝对随机性,而实现随机性是非常困难的。一旦采样过程中存在任何偏见,分析结果就会相差很大。另外,当人们想了解更深层次的细分领域时,随机采样的方法就不可取了。大数据是指不用随机分析法这样的捷径,而采用所有数据的方法分析问题。
在越来越多的情况下,使用所有可获取的数据变得更为可能,但为此也要付出一定的代价,那就是数据中的错误信息。大数据时代要求我们重新审视精确性的优劣,大数据不仅让我们不再期待精确性,也让我们无法实现精确性。确切地说,在很多社会和技术领域,我们更倾向于纷繁混杂。大数据要求我们有所改变,我们必须能够接受混乱和不确定性,通过接受不精确性,我们开启了一个从未涉足的世界。
我们在理解和解释世界上各种现象时,使用两种基本方法:一种是通过快速、虚幻的因果关系,还有一种是通过缓慢、有条不紊的因果关系。小数据时代,人们偏向用因果联系来看待周围的一切,即使这种关系并不存在。通过去探求“是什么”而不是“为什么”,相关关系帮助我们更好地了解了这个世界。例如,2009年,互联网巨头谷歌公司用相关关系分析法准确判断出了甲型H1N1流感是从哪里传播出来的,路径是什么,这一预测与官方数据的相关性高达97%。大数据的核心是预测,通过找到一个关联物并监控它,我们就能预测未来。
2. 大数据时代的商业变革
大数据成为许多公司竞争力的来源,从而使整个行业结构都改变了。大公司和小公司最有可能成为赢家,而大多数中等规模的公司无法在行业调整中受益。掌握着大量数据的大公司通过分析收集到的数据,成功实现了商业模式的转型,如航空发动机制造商劳斯莱斯。苹果公司进军移动手机行业也是个很好的例子,它在与运营商签订的合约中规定运营商要提供给它大部分的有用数据。通过来自多个运营商提供的大量数据,苹果公司得到的用户体验的数据比任何一个运营商都多。苹果公司的规模收益体现在了数据上,而不是固有资产上。大数据也为小公司带来了机遇,聪明而灵活的小公司能享受到非固定资产规模带来的好处。重要的是,因为最好的大数据服务都是以创新思维为基础的,所以它们不一定需要大量的原始资本投入。
3. 大数据时代的管理变革
我们在生产和信息交流方式上的变革必然会引起自我管理所用规范的变革。这种变革不仅仅止于规范,在更深层次上也体现了价值观的转变。在大数据时代,我们需要建立一个不一样的隐私保护模式,这个模式应该更着重于数据使用者为其行为承担责任,而不是将重心放在收集数据之初取得个人同意上。将责任从民众转移到数据使用者很有意义,也存在充分的理由,因为数据使用者比任何人都明白想要如何利用数据,所以他们理所当然应对自己的行为负责。
在大数据时代,关于公正的概念需要重新定义以维护个人动因的想法:人们选择自我行为的自由意志。简单地说,就是个人可以而且应该为他们的行为而非倾向负责。身处大数据时代,我们必须拓宽对公正的理解,必须把个人动因的保护纳入进来,就像目前我们为程序公正所做的努力一样。如若不然,公正的信念就可能被完全破坏。另外,大数据的运作是在一个超出我们正常理解的范围之上的。例如,谷歌所确定的45个与流感相关的检索词条是通过测试了4.5亿个数学模型而得出的。
总之,正是因为有了思维的革命,才有了推动现代社会发展的商业变革和管理变革,而无论是商业变革还是管理变革,都离不开创新活动。